
J .  Fluid Mech. (1971), vol. 47, part 2, p p .  405-413 

Printed in Great Britain 
405 

Energy stability of the Ekman boundary layer 

By JOSEPH J. D U D I S  AND STEPHEN H. DAVIS 
The Johns Hopkins University, Baltimore, Maryland 

(Received 20 July 1970) 

The critical value RE of the Reynolds number R is predicted by the application 
of the energy theory. When R < RE, the Ekman layer is the unique steady solu- 
tion of the Navier-Stokes equations and the same boundary conditions, and is, 
further, stable in a slightly weaker sense than asymptotically stable in the mean. 
The critical value RE is determined by numerically integrating the relevant 
Euler-Lagrange equations. An analytic lower bound to RE is obtained. Com- 
parisons are made between RE and RL, the critical value of R according to  linear 
theory, in order to demark the region of parameter space, RE < R < RL, in 
which subcritical instabilities are allowable. 

1. Introduction 
The Ekman boundary layer can exist for fluids in a rotating system (Green- 

span 1968). It arises for a flow of a fluid in the semi-infinite space beneath a rigid 
surface which is moving over it with a constant velocity. Similarly, it also 
arises in the case of a fluid in a semi-infinite space moving over a stationary rigid 
surface where the fluid velocity far from the surfaceis unidirectional and constant. 

The stability of the Ekman layer has been studied both experimentally 
(Faller 1963; Faller & Kaylor 1966; Tatro & Mollo-Christensen 1967) and through 
linearized stability theory (Barcilon 1965; Faller & Kaylor 1966; Lilly 1966). 
Combined, these studies confirm the existence of two classes of unstable dis- 
turbances. Class A instabilities, caused by the interaction of shear and Coriolis 
forces, are travelling waves. Class B waves, an inflexional instability, are nearly 
stationary with respect to the rotating plate. A more detailed discussion can be 
found in Greenspan (1968). The class A waves appear at  a lower Reynolds 
number than those of class B. Lilly (1966) finds that RL = 55 at an orientation 
16' to the right of the motion of the plate with a preferred non-dimensional 
wave-number of 0.32. 

We here investigate the energy stability of the Ekman layer. We seek a value 
RE of R such that R < RE is a sufficient condition for stability in a slightly weaker 
sense than asymptotic stability in the mean (see 3 4). Furthermore, if R < RE, the 
Ekman layer is the unique steady solution of the Navier-Stokes equations sub- 
ject to the same boundary conditions over the class of functions considered. An 
analytic lower bound to RE is obtained. 

The effect of disturbance amplitudes on the onset of instability is demarked. 
Regardless of initial amplitude, the critical value of the Reynolds number Rc for 
the onset of instability must lie in the interval RE < R, < RL. 
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2. The basic flow field 
The basic flow field is an exact solution (Barcilon 1965) to the incompressible 

Navier-Stokes equations. The system represented by this field consists of fluid 
of constant density po, and kinematic viscosity u occupying the half-space below 
an infinite horizontal rigid plane. The entire fluid plane system rotates in a counter 
clockwise direction about a vertical axis with constant angular velocity 51. In 
a Cartesian co-ordinate system, rotating with angular velocity 8, z is taken to be 
the vertical co-ordinate with its positive direction downward, and x and y are 
taken in the plane of the surface. The velocity vector is V, V = (u,v,w), the 
pressure is p, and the angular velocity is SZ = !2(0,0, - 1) with respect to a non- 
rotating system; the surface at x = 0 is made to move in the y-direction with 
constant speed V, while the fluid as x + 00 remains at rest. 

The system described satisfies the equations of motion in a rotating co-ordinate 
system, 

av -+v. vv+ 2 8  x v = - V(p/p0) + UVW, 
at 

v.v = 0) 
and the boundary conditions, 

V = (O,&, 0) on x = 0, 

v+o as z+m. 

(2.1 a, b )  

(2 . lc)d)  

The relevant solution of the system (2.1) is called the non-divergent Ekman 
boundary layer, and was given by Barcilon (1965) as follows: 

w = 0, 

CJ = - V, e+IL sin (x/L), 

V = V,e-x'Lcos (z/L), 
(2.2a, b ,  c )  

where L = (u/ !2)*  and V = (77, V ,  W ) .  
We shall study the stability of the solution represented by (2.2). The stability 

analysis will also apply to the above problem where instead of the plate moving 
uni-directionally and the fluid at x -+ co at rest, the fluid at  x -+ 00 moves uni- 
directionally with constant speed V, while the fluid at  the plate is at rest with 
respect to the rotating plate. The basic solution differs from (2.2) only trivially. 

3. The energy identity 
We will now develop the energy identity for disturbances to the basic state 

(2.2). Let (V,p) represent the velocity and pressure fields of the basic state, and 
let (V*,p*) represent any other solution of system (2.1). Now let 

I u = (u,v,w) = v*-v, 
n = p * -  P- 

(3. la ,  b )  
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(u, n) represents the difference between the disturbed and undisturbed states. 
Since both (V,p) and (V*,p*)  satisfy system (2.1), we can obtain the system 
governing the disturbance: 

(3 .2  a-d) I au 
- + u. vu  +u. vv + v. vu  = - V(n/po) + vv%l, 
at 

v . u  = 0) 

u = 0  on z = 0 ,  

u+O as z+m.  

We shall henceforth confine our attention to disturbance functions which 
belong to the class 9: 

(i) periodic in x and y, 

(ii) Fourier transformable in 5 and y ,  or 

(iii) periodic in either x or y and Fourier transformable in the other. 

The development of the energy identity now follows, with trivial changes in 
notation, that of Dudis & Davis (1971). The identity is as follows: 

dK - = -/v[Ru.D.u+Vu:Vu], 
at 

( 3 . 4 ~ )  

where the Reynolds number R is defined by 

R=-=J ' (  v,L uQ)-4 (3 .4b )  
V 

and K = / v t ~ . u ,  (3 .4c )  

( 3 . 4 4  

and the scaled basic state is given by 

( U ,  V )  = ( - e-2 sin z, e-z cos z). (3 .4e )  

The subscript z denotes differentiation, and we have non-dimensionalized the 
identity using the following scales: length N L, time - L2/v, velocity N V, where 
L and V, are defined below (2.2). We have not distinguished non-dimensional 
variables from dimensional ones, since we shall henceforth confine our attention 
to only non-dimensional quantities. 
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4. The maximum problem 
Let us define 

and 

D = J v V u : V u  

I- 

I = - J  U . D . U .  
Y 

With these definitions, the energy identity ( 3 . 4 ~ )  can be written 

dK - = +R;) D. 
at 

It follows from (4.2) that 

(4 . la)  

(4.lb) 

whenever the maximum problem (M) is satisfied: 

Rgl = maxI,  D = 1 (M) 
9 

where 

Y = (ulu has continuous second partial derivatives, V . u = 0, 

u = 0 on x = 0 and u , e ,  w e F ) .  

Precisely the same arguments made in $ 4  of Dudis & Davis (1971) apply here. 
We state the result: 

If R < RE, then the basic state is stable in that D -+ 0 as t + co in the sense 
that 

lim J: Ddt < 00. (4.4) 
T+az 

Let be a rectangular parallelepiped bounded in the z-direction with the wall 
z = 0 as one of its boundaries. The extent in the 2- and y-directions is either a 
wavelength or the whole real line depending on which case of class 9 is being 
considered. Then, if there exists a positive number G2 such that 

holds, then the definition of stability (4.4) further means that j? = 
as T -+ co in the sense that 

Furthermore, if R < RE, then the Ekman layer represented by equations (2.2) 
is the unique steady solution of the Navier-Stokes equations and boundary 
conditions (2.1 c, d )  over the class 9. 

The maximum problem (M) is equivalent to the variational equation: 

2 1 
6 D . u - zjY p V  . u + jY Vu: Vu) = 0, 
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where p and R are Lagrange multipliers. The consequent Euler-Lagrange 
equations are as follows: 

Ru.D = - V ~ + - V ~ U ,  

v.u = 0, 

with the boundary conditions 

I u = O  on z = O ,  

u - t o  as z-tco. 

(4 .6a ,  b) 

( 4 . 6 ~ ~  d )  

As in Dudis & Davis (1971) it is easy to show that 

RE = min pos R, 

and we have stability and uniqueness in the above sense if 

R < RE. 

5. The eigenvalue RE 
5.1. Lower bounds 

Lower bounds to RE can be obtained 8s in Dudis & Davis (1971) by considering 
the maximum principle (M) over a space of functions Y; extended from 9’ by 
relaxing the restriction V . u = 0. As was obtained there, the consequent Euler- 
Lagrange equations corresponding to the lower bound are as follows : 

@ q w  = v2u, 

@Ew = v2v, 

gRu,u+ *REV = v2w, 
with the conditions 

u=O on z = O .  

u+O as z+m. 

(5.1 u-c) 

(5 .14  e) 

Here R, = infposR and R, < RE. Again, an analytic lower bound R,, to R, 
can be found by using 

and V ,  < J2e-2. 

The system (5.1) is identical to the system (7.3) of Dudis & Davis (1971) for 
P = 1 if we make the transformation, 

(X,Y,Z,U,%W) --f ( -Y,Z,X,  - W , d , U ) .  

Hence we find that, using the results of Dudis & Davis (1971, $7) ,  

R, = 3.09, 

R,, = 1.45, 
and that R,, < R, < RE. 
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5.2. Reduction to ordinary diferential equations 

Let us now express those functions of 9, case (i) in terms of normal modes as 
follows: f = Re(&, k,z)exp[i(Zx+ky)]}. 

In  case (ii), we can write 

The Euler-Lagrange system (5.1) in these cases as well as in case (iii), becomes 
the following: 

(5.2) 

gRl&@ = - iZ@ + (D2 - m2) a, 
+RE@ = - ikj3 + (D2 - m2) 0, 

$RU,a++RE@ = -Dj3+(D2-m2)t2, 
iZ+2+ik0+Di3 = 0, 

with the boundary conditions, 

$ 2 = 0 = 8 = 0  on z = O ,  

where 

G,O,a-+O as z+oo,  

D = d/dz and m = (k2+Z2)*. 

5.3. Relationship with the buoyancy boundary layer 
The Euler-Lagrange system (5.2) can be compared with the corresponding 
system, (8.1) of Dudis & Davis (1971), governing the buoyancy boundary layer. 
The buoyancy problemforP = 1 and k, 0 E 0 is identical with the Ekmanproblem 
for k = 0. This can be seen by making the transformation 

(x, y ,  2, k, 1, a, 8, a) -+ ( - Y ,  0, x, 0, - $,a, 
in system (5.2) and comparing with Dudis & Davis (1971, equation (8.1)). This 
result also holds in the linear stability problem (Gill & Davey 1969). No relation 
exists between the complete three-dimensional problems. All of the above are 
consequences of the analogies between rotating and stratified fluids (Veronis 
1967). 

5.4. Xymmetry property 

The smallest positive eigenvalue R(k,Z) of R of system (5.2) satisfies the sym- 
metry relation, 

Relation (5.3) can be obtained by transforming system (5.2) as follows: 

(5.3) E(k,  Z) = fi( - k, - Z). 

- -  - 
( Z , k , @ , a , O , a , a ) - + ( - l , - k , - p , - - U . , - - W , - - , R )  

and noting that fi = B. Thus, due to (5.3), when seeking RE = minfi(k, I ) ,  it is 
sufficient to search only a half-plane of the (k, Z)-plane. k, 1 



Energy stability of the Ekman boundary layer 41 1 

5.5. Numerical solution 

The numerical scheme is identical to that of Dudis & Davis (1971, $8.4).  The 
appendix summarizes the details. 

The minfi(0,l) is the two-dimensional result that is identical to that of the 

two-dimensional buoyancy problem for P = 1 (see 5 5.3). The result is 
1 

minW(0,Z) = 21.3+ 0.1. 

The minimum is attained at  1 = 0.70 & 0.05. The search in the remainder of the 
half-plane yields that 

which is attained for k = 0.41 f 0.01, 1 = 0.38 k 0.01. This is equivalently a 
wave-number of m = 0.56 & 0.01; the dependent variables are independent of 
an angle 47.2' f 1.5' to the right of the surface flow on x = 0. The results are 
entered in table 1. 

1 

RE = 18.3 + 0.1, 

Wave-numbers Angle 
R& = 55 0.32 16' 
RE = 18.3 0.56 47.2' 
R, = 3.09 0 - 

TABLE 1 

- R,, = 1.45 0 

6. Results and conclusions 
The object of the numerical analysis was to find the value RE. When R < RE, 

the Ekman boundary layer is asymptotically stable in the mean over rectangular 
parallelepipeds bounded bythe wall at x = 0 and of finite extent in the x-direction 
(see Q 4), and is additionally the unique steady solution of the governing equa- 
tions over the class 9. 

Easily obtained lower bounds to RE were developed by solving the maximum 
principle (M) over a space of functions not restricted by V . u = 0. The lower bound 
R,, obtained analytically was R,, = 1.45 while a better bound R, was obtained 
numerically as R, = 3.09 with an accuracy of & 0.01. In  both cases, these 
values correspond to the limit m + 0. Also see table 1. 

The energy limit R,was computed numerically, and found to be RE = 18.3 
with an accuracy of & 0.1. The corresponding wave-numbers are 

( k ,  I) = (0.41,0.38) 

with an accuracy of + 0.01. This corresponds to eigenfunctions independent of 
a direction at an angle of 47.2" & 1.5" to the right of the surface flow at  2 = 0. See 
table 1. 

The energy results are to be compared with the results of linear theory. Lilly 
(1966) finds the critical value RL of the Reynolds number for instability as 
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R, = 55 for a wave-number of 0.32. The eigenfunctions are independent of 
direction a t  an angle of 16" to the right of the flow at z = 0. See table 1. We thus 
have that subcritical instabilities may exist in the region RE < R < R,. 

The results of experiments seem generally to be concentrated on the onset of 
the class B waves, since these are nearly stationary in the rotating system and 
are thus more easily detected. At this point there seems to be no record of observa- 
tions of subcritical instabilities for class A waves (i.e. for R < R,). Although 
this paper shows that subcritical instabilities are allowable, it does not show that 
they in fact exist. However, in all previous problems treated by the energy theory, 
when subcritical instabilities are allowable they do exist, so their existence is 
plausible here. 

The authors thank Prof. F. P. Bretherton for his careful reading of an earlier 
draft, particularly of 8 4. J. J. D. appreciates the time, and assistance in the 
numerical computation, given by Mr James Smith, Director of the University 
of Baltimore Computer Center. S. H. D. is grateful for the partial support of 
NSF grants GA 16603 and GP 17562. 

Appendix. Numerical scheme 
Let us define 8 = (D-m)a, 6 = (D-m)O 

and uj = ~ R j + i u I j  (j = 1, ..., 6).  

The Euler-Lagrange equations (5.2) can be written 

Da, = 6, + maR, 

Da, = fi,+mh,, 

DO, = 6, + mOI, 

D2,  = la, + kOI, 

DO, = 6, + OR, 

D8,  = - l & ~  - k a ~ ,  

Dfi R -  - - 19,- m6R + +RU,tDR, 

DB, = l$R -ma, + $Rq@I, 

D6, = - k$, - mb, + +RKkBR, 
0 6 ,  = kfjR - m6, + &RE$,, 
239, = - +.El&&, - $RV,GR + I&, + kh, + kmO, + lm&, - m2aR, 

A 

D@, = - +Rq&, - &R<OI - 13, - k6, - km0, - -ma&,. 

As in appendix C of Dudis & Davis (1971) for large z, the asymptotic boundary 
conditions are the following: 

M3& = M30 = M32 = 0 on x = xl, 

where M = D + m, and x1 + co in fact but is taken to apply at  finite values of x. 
x1 = 8 was found sufficient to guarantee minor changes in the fifth significant 
figure of RE for x1 > 8. The system (A 1) was integrated to find RE precisely, 
as in Dudis & Davis (1971). 



Energy stability of the Elonan boundary layer 413 

R E F E R E N C E S  

BARCILON, V. 1965 Tellus, 17, 53. 
DUDIS, J. J. & DAVIS, S. H. 1970 J .  Fluid Mech. 47, 381. 
FALLER, A. J. 1963 J .  Fluid Mech. 15, 560. 
FALLER, A. J. & KAYLOR, R. E.  1966 J .  Atm. Sci. 23, 466. 
GILL, A. E. & DAVEY, A. 1969 J .  Fluid Mech. 35, 175. 
GREENSPAN, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press. 
LILLY, D .  K.  1966 J .  Atmos. X c i .  23, 481. 
TATRO, P. R. & MOLLO-CHRISTENSEN, E.  L. 1967 J .  Fluid Mech. 28, 531. 
VERONIS, G. 1967 Tell-, 19, 326. 


